binding electron

英 [ˈbaɪndɪŋ ɪˈlektrɒn] 美 [ˈbaɪndɪŋ ɪˈlektrɑːn]

网络  结合电子; 束缚电子

机械



双语例句

  1. We're going to be looking at the solutions to the Schrodinger equation for a hydrogen atom, and specifically we'll be looking at the binding energy of the electron to the nucleus.
    我们将研究下氢原子薛定谔方程的解,特别是电子和核子的结合能,我们将研究这部分。
  2. And we know that n describes the total energy, that total binding energy of the electron, so the total energy is going to be equal to potential energy plus kinetic energy.
    我们知道,n是描述总能量的,电子总的结合能,所以总能量,等于,势能加动能。
  3. So we have the operationon the wave function in terms of r, theta, and phi and remember this e is just our binding energy for the electron, and we get back out this wave function.
    我们用r,θ,φ来表示,将算符作用于波函数,而且记住e仅仅是电子结合能,然后后面加上波函数。
  4. So, what we can do is figure out what we would expect the binding energy of that electron to be in the case of this total shielding.
    完全屏蔽的案例中,期望的电子结合,能再次记住,结合能物理上来说是。
  5. What is the binding energy of the ground state electron in hydrogen?
    氢在基态的情况下,它的电子结合能是多少?
  6. Structural features, binding energies, vertical ionization potentials, vertical electron affinity, charge transfers, and binding characters were evaluated for each Au& Ni binary cluster.
    详细地分析了团簇的结构特征,平均结合能,垂直电离势,垂直电子亲和能,电荷转移以及成键特征。
  7. So when you operate on the wave function, what you end up with is getting the binding energy of the electron, and the wave function back out.
    所以当你将它作用于波函数时,你得到的是电子的结合能,和后面的波函数。
  8. So if we can figure out the binding energy, we can also figure out how much energy we have to put into our atom in order to a eject or ionize an electron.
    所以如果我们可以计算出结合能,我们也可以计算出,我们需要注入多少能量到原子中,去逐出或电离一个电子。
  9. A variational method is adopted to investigate the ground state binding energy of an electron bound to a donor impurity near the interface of a single semiconductor heterojunction by considering the modification of the dielectric constant within a continuous dielectric theory.
    采用连续电介质理论计入对材料介电常数的修正,利用变分法讨论半导体单异质结中界面附近的单电子束缚于施主杂质的基态结合能。
  10. An inverse curve and some empirical formulas have been found between the computed binding energy of hydrogen atom and the d electron repulsive potential.
    发现在计算的氢原子结合能与d电子排斥势之间存在着定量的反比关系。
  11. The ground state binding energy and the average number of virtual phonons around the electron of the bound magnetopolaron are derived.
    导出了束缚磁极化子的基态束缚能、光学声子平均数。
  12. Numerical calculations indicate that both the ground state binding energy and the average number of virtual phonons around the electron increase with increasing lateral confinement strength, longitudinal confinement strength, and cyclotron frequency.
    通过数值计算表明,量子点中强耦合束缚磁极化子的基态束缚能和光学声子平均数均随量子点的横向受限强度、纵向受限强度的增加而增大,随回旋频率的增加而增大。
  13. Methods: Brdu-ELISA, Annexin V/ PI binding, Real-time fluorescent quantitative RT-PCR, FACS, Electron microscope, Immunocytochemistry and Western blot analysis were applied in present study.
    方法应用的技术包括BrdU-ELISA、AnnexinV/PI染色、透射电镜、实时荧光定量RT-PCR、流式细胞术、免疫细胞化学和westernblot等。
  14. The binding energies, ionization potential, electron affinity, the highest occupied molecular orbital energy level, lowest unoccupied molecular orbital energy level, and the energy gaps of them have been calculated.
    计算了稳定结构的平均结合能、电离势、电子亲和势、最高占据轨道能级和最低空轨道能级及二者间的能隙。
  15. Plastocyanin is a copper binding protein, which play an important role in electron transmission.
    质体蓝素是一种含铜离子的蛋白,其在植物的电子传递过程中起着重要作用。
  16. The numerical results show that the binding energy depends on not only the effective mass and dielectric constant but also the spatial distribution of the electron probability density.
    数值计算结果表明,杂质结合能不仅依赖于电子有效质量和材料的静态介电常数,而且对没有外加势场时量子阱中电子几率密度的空间分布也很敏感。
  17. Apoptosis was assessed by flow cytometric DNA analysis, FITC Annexin ⅴ binding/ PI staining and electron microscopy.
    流式细胞仪DNA分析、FITC-AnnexinⅤbinding/PI染色以及电镜扫描检测细胞凋亡。
  18. Chemical shift of binding energy of electron ( E_b) of Al, Si and O was also observed.
    观察到铝、硅、氧的电子结合能化学位移。
  19. Under the influence of the like induction electric field force, the velocity of the mass motion of the binding electron pairs increases from zero to 10 3-10 4 ms-1, making the entropy the of superconducting current less than the one of the normal current.
    在类感应电场力的作用下,束缚电子对质心定向运动速度由零增大到103-104ms-1,使超导电流的熵小于正常电流的熵。
  20. In the present method, the effective potential is chosen to make the binding energy of the transition K-electron equal to its ionization potential and the K-shell electron capture cross section is an analytical expression.
    与其它现有理论不同之处在于本文的模型势的选择是让参与跃迁的K电子的结合能(bindingenergy)等于其电离能。在MPOBK近似中,K壳层电子俘获截面是一个解析表达式。
  21. After considered the effect of phonon, exciton binding energy still increases with pressure, but the enhancement is weakened, exciton phonon interaction screens the Coulomb interaction between electron and hole.
    考虑声子作用后,激子结合能仍随压力的增大而增加,但增加的幅度明显减弱,激子&声子作用屏蔽了电子与空穴的库仑作用。
  22. The binding, internalization and intracellular routing of colloid gold labeled ConA ( ConA Au) have been studied in mouse peritoneal macrophages by electron microscopy.
    本文采用电子显微镜对胶体金标记刀豆素A(ConA-Au)与小鼠腹腔巨噬细胞表面ConA受体的结合、内吞及其在巨噬细胞中转运的形态学变化;
  23. The binding energy of Ga 3d electron, IR spectra and unit cell parameters of the resulting Ga-BETA zeolites were obviously changed due to the addition of Ga in the initial mixture.
    由于Ga的掺入,产物的晶胞参数,红外光谱以及Ga3d电子的电子结合能都发生明显变化。
  24. The binding energy of Zn 3d electron becomes larger along with the strengthening of coupling between Zn 3d or Zn 3d+ Zn 4s and O 2p.
    随着Zn3d+Zn4s态和Zn3d态电子与O2p态电子耦合的增强,Zn3d态电子的结合能变大;
  25. Immune electron microscopy ( IEM) is the term generally used for techniqUes that detect the specific binding of antibody to antigen by electron microscopy.
    免疫电子显微术是指用电子显微术检测抗原与抗体的特异性结合的技术。
  26. The structure functionally important residues, such as the heme binding residues, the residues interacting with redox partner protein and/ or involved in electron transfer, the residues lining substrate access channel and the substrate binding residues, were identified from the model.
    并根据模型推测与血红素辅基相互作用的残基、与氧化还原偶联蛋白作用和参与电子传递的残基、底物进出通道和活性位点的残基。
  27. In this article, we use Hubbard model under tight binding condition to calculate the electron magnetic property in Zigzag graphite.
    本文在紧束缚近似的基础上采用Hubbard模型,计算了Zigzag石墨带中的电子自旋极化性质。
  28. The trend of the binding energy as a function of impurity position and electron areal density is the same as the result without a magnetic field.
    结合能随杂质位置、电子面密度的变化趋势与无磁场时相同。